Packaged Firetube Boilers
Firetube Boilers

- Produce saturated steam for process
- Capacities: 0.5 t/h up to 20 t/h
- Steam conditions: 7-20 bar saturated steam
- Fuels: Gas, HFO, LFO, coal and wood
- Furnace and combustion equipment arrangements
 - Swinging chutes & chain grate stoker for coal
 - Stationary grate for firing logs
 - Brick set step grate furnace for fibrous fuel firing
 - Water cooled cylindrical furnace for gas/oil firing
Package Boiler

![Diagram of a package boiler system](image)

- **Boiler**
- **Grit Arrestor**
- **Stoker**
- **FD Fan**
- **ID Fan**
Coal Fired Firetube Boiler Installation
Industrial Watertube Boilers
Industrial Watertube Boilers

- Produce superheated steam for power generation
- Capacities: 20t/h up to 200t/h
- Steam pressures: 20-110 bar
- Superheated steam: 280-540°C
- Fuels: Gas, HFO, LFO, coal and fibrous biomass
- Combustion equipment and furnace configurations
 - Pneumatic fuel spreading of biomass and coal
 - Dump or steam cleaned grate for suspension firing
 - Moving grate for firing coal and high ash biomass fuels
 - Burners for gas, LFO and HFO
 - Water cooled furnace with membrane wall construction
Watertube Boilers

Configured for different fuels e.g.:

- Sugar industry – bagasse & coal
- Paper industry – woodchips and bark
- Petro-chemical industry – oil or gas
Typical Bi-drum Sugar Mill Boiler

- Primary fuel - Bagasse
- Secondary fuel - Coal
- 50-200 t/h
- 3 100-8 200 kPa
- 385-520°C
- Power generation boilers
- Bagasse feeders
- Coal bunker & feeders
- Pneumatic spreaders
Fuel Feeders on Coal/Bagasse Boiler
Pneumatic Fuel Spreader
Moving Grate
Efficient Combustion
Stationary Steam Cleaned Grate
Heat Recovery Tower
Latest Developments
Market Trends and Demands

- Need for electrical power in developing world
- Need for medium to small, efficient power stations
- Conversions of process steam plants to co-gen plants
- High fuel costs – need for energy security
 (Use fuels locally available to displace imported oil products)

 - Small power island with optimised cycle efficiency
 - Small higher pressure biomass / coal fired power boilers
 - Emphasis on efficient combustion of coal and biomass
 - Improved plant reliability to provide secure power supply
Increased cycle efficiency
Cycle Efficiency = f(Steam Pressure)

- Cycle efficiency increases with increase in steam pressure
- Demand for boilers pressures of 8 200 – 11 000kPa(g)
Bi-drum vs Mono-drum at higher pressures

- Disadvantages of bi-drum design at higher pressures
 - Drum drilling requires very thick walls
 - Expanded tube construction no longer possible
 - Reduced effectiveness of evaporation bank at high pressure

- Advantages of mono-drum design at higher pressures
 - Single drum with relatively thin wall
 - Evaporation bank reduced in favour of larger superheater
 - Emphasis on large banks of economiser
 - Fully welded pressure part construction
From Bi-drum to HP Mono-drum
High Pressure Mono-drum Boilers

- Coal and biomass
- 120-250 t/h
- 8 200 – 12 000kPa
- Fully welded construction
Small Biomass Fired Power
20t/h Biomass/Coal Fired Boiler

- MicroGen Boiler
- 20t/h steam
 - Up to 61bar(g)
 - Up to 460°C
- Fuel: Coal or Biomass
- Efficient
- Compact
- Short delivery
- Quick installation/erection
- Modular power station
Combustion Equipment

CAD stoker & pneumatic spreaders
Pressure Envelope
Computational Fluid Dynamics
Computational Fluid Dynamics (CFD)

- Combustion modelling
- Thermal modelling
- Accurate prediction of radiation into the superheater
- Mitigate erosion risk
 - Model of particle trajectories for potential erosion
- Mitigate tube failures due to insufficient circulation
 - Model of heat flux profile in the furnace
CFD - Flame Profile in Furnace
CFD – Reducing Unburnt in Fly Ash
CFD – Different Secondary Air Distributions
CFD – Flame Profile in the Furnace
CFD – Increasing Furnace Residence Time
CFD – Particle Trajectories by Size
CFD – Particle Trajectories by Size
Biomass: Velocity of Particle Tracks
CFD - Heat Flux for Circulation Assessment

Contours of Total Surface Heat Flux (W/m²)

Sep 09, 2011
ANSYS FLUENT 13.0 (3d, pbns, spe, rke)
Thank you